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We consider a pair of random heteropolymer chains with quenched primary sequences. For this system we
have analyzed the dependence of average ground state energy per monomer E on chain length n in the
ensemble of chains with uniform distribution of primary sequences of monomers. Every monomer of the first
�second� chain is randomly and independently chosen with the uniform probability distribution p=1 /c from a
set of c different types A, B, C, D,... �A� , B� , C� , D� , . . .�. Monomers of the first chain could form saturating
reversible bonds with monomers of the second chain. The bonds between similar monomer types �such as
A–A�, B–B�, C–C�, etc.� have the attraction energy u, while the bonds between different monomer types
�such as A–B�, A–D�, B–D�, etc.� have the attraction energy v. The main attention is paid to the computation
of the normalized free energy E�n� for intermediate chain lengths n and different ratios a=v /u at sufficiently
low temperatures, when the entropic contribution of the loop formation is negligible compared to direct
energetic interactions between chain monomers, and when the partition function of the chains is dominated by
the ground state. The performed analysis allows one to derive the force f�x� which is necessary to apply for
unzipping of two random heteropolymers of equal lengths whose ends are separated by the distance x, aver-
aged over all equally distributed primary structures at low temperatures for fixed values a and c.
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I. INTRODUCTION

Recent progress in nanotechnology has offered a possibil-
ity of single-molecular experiments. The corresponding tech-
nique allows one to investigate many physicochemical and
biological properties of individual molecules. One of the
modern biophysical key experiments deals with the mechani-
cal unzipping of individual double-stranded DNA macromol-
ecule under the action of external force applied to the ends of
strands. This system has been analyzed theoretically in a
number of important contributions �1–9�. Some of them are
devoted to the consideration of unzipping transition in an
effective homopolymer chain, the other pay attention to the
heterogeneity of primary sequence of complimentary strands
constituting the DNA molecule.

In our work we address a problem of unzipping of a com-
plex of two random heteropolymers of finite lengths at suf-
ficiently low temperatures when the partition function is
dominated by the ground state. We demonstrate that this
problem can be mapped to the alignment of two random
sequences with the general “cost function” which takes into
account the weights of perfect matches, mismatches, and
gaps �all necessary definitions are introduced below�. Using
this bijection we are able to compute the external work nec-
essary to unzip the complex of two random heteropolymers,
averaged over the uniform distribution of all possible pri-
mary sequences of heteropolymers. Our consideration allows
also to conjecture the scaling corrections to the leading be-
havior of the force fluctuations due to the finiteness of the
lengths of heteropolymer chains.

The paper is organized as follows. In Sec. II we define a
model and introduce the basic notations. In Sec. III we con-

sider unzipping of two random heteropolymers from the
point of view of the search of longest common subsequence
�LCS� of two random sequences. The expectation of the LCS
energy is considered in Sec. IV. In the conclusion we give the
qualitative explanation of our main results and derive a
force, which is necessary to apply to the chain ends to unzip
two random heteropolymer chains at low temperatures.

II. THE MODEL

Consider two random heteropolymer chains of lengths
L1=m� and L2=n� correspondingly. In what follows we
shall measure the lengths of the chains in number of mono-
mers, m and n, supposing that the size of an elementary unit,
�, is equal to 1.

Every monomer of the first �second� chain can be ran-
domly and independently chosen with the uniform probabil-
ity distribution p= 1

c from a set of c different types A, B, C,
D,... �A� , B� , C� , D� , . . .�. Monomers of the first chain
could form saturating reversible bonds with monomers of the
second chain. The term “saturating” means that any mono-
mer can form a bond with at most one monomer of the other
chain. The bonds between similar types �such as A–A�,
B–B�, C–C�, etc.� have the attraction energy u and are
called “matches,” while the bonds between different types
�such as A–B�, A–D�, B–D�, etc.� have the attraction energy
v and are called “mismatches.” Some parts of the chains
could form loops, hence contributing to the entropic part of
the free energy of the system. It is supposed that the mono-
mers belonging to the same chain do not interact with each
other at all. Schematically a particular configuration of the
system under consideration for c=2 is shown in Fig. 1. Our
aim is to compute the free energy of the described model at
sufficiently low temperatures when the entropic contribution
of the loop formation is negligible compared to the energetic
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part of the direct interactions between chain monomers.
Consider now the partition function Gm,n of such a com-

plex which is the sum over all possible arrangements of
bonds. Since we are interested in the low-temperature behav-
ior of Gm,n, we neglect the entropic contribution of the loop
weights which allows us to write Gm,n recursively in terms of
the partition functions of individual chains gn:

Gm,n = gmgn + �
i,j=1

m,n

�i,jGi−1,j−1gm−ign−j ,

Gm,0 = gm; G0,n = gn; G0,0 = 1.

�1�

The meaning of the Eq. �1� is as follows. Starting from, say,
the left ends of the chains shown in Fig. 1, we find the first
actually existing contact between the monomers i �of the first
chain� and j �of the second chain� and sum over all possible
arrangements of this first contact. The term gmgn in Eq. �1�
contributes to the absence of any contact. The entries �i,j
�1� i�m , 1� j�n� are the statistical weights of the bonds
which are encoded in a contact map ���:

�m,n = ��+ 	 eu/T if monomers i and j match,

�− 	 ev/T if monomers i and j do not match.



�2�

For a system of two heteropolymer chains depicted in Fig. 1
the contact map ��� is shown in Fig. 2.

If one allows for the loop formation within each chain, the
partition functions of an individual chain gn satisfy the recur-
rent equation �10–12�:

gn = 1 + �
i=1

n−1

�
j=i+1

n

�i,j� gj−i−1gn−j; g0 = 1, �3�

where �i,j� are the self-association constants, which are �simi-
larly to �m,n� random variables encoded in some contact
map. According to the definition of our model, it is assumed
the absence of self-association, i.e., ��	0, hence

gn 	 1. �4�

The case of nonzero �� was thoroughly investigated recently
�13–15� in a setup when the interactions in the system are
predetermined instead of being random and we refer the
reader to these papers for more details. Note also that
throughout our paper we do not allow for the energetic ef-
fects due to the folding of dsDNA into globular structure,
since �i� these effects are relatively small as compared to the
effects of zipping �i.e., formation of double strand itself� and
�ii� the dsDNA is known to be very stiff, therefore the for-
mation of globule is possible only for long enough DNA
chains, while the finite size effects which are discussed in
this paper manifest themselves on much smaller length
scales.

III. UNZIPPING OF TWO RANDOM HETEROPOLYMERS
AND SEARCH OF LCS OF TWO RANDOM

SEQUENCES

A. Heteropolymer ground-state energy:
Local recursive construction

The straightforward computation shows that the partition
function Gm,n �with gn=1—see Eq. �4�� obeys the following
exact local recursion:

Gm,n = Gm−1,n + Gm,n−1 + ��m,n − 1�Gm−1,n−1. �5�

Note that if �i,j =2 for all 1� i�m and 1� j�n, the recur-
sion relation �5� generates the so-called Delannoy numbers
�16�.

Represent now the partition function Gm,n in the following
way:

Gm,n = eFm,n/T, �6�

where −Fn,m has the sense of the free energy and T stands for
the temperature of the pair of heterogeneous chains of
lengths m and n. Considering the T→0 limit, we get

Fm,n = lim
T→0

T ln�eFm−1,n/T + eFm,n−1/T + ��m,n − 1�eFm−1,n−1/T�

�7�

which can be regarded as the equation for the ground state
energy of a chain. The expression �7� can be rewritten in a
symbolic form

Fm,n = max�Fm−1,n, Fm,n−1, Fm−1,n−1 + �m,n� , �8�

where

- A-A' or B-B' contacts;

- A-B' or B-A' contacts;

- loop
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FIG. 1. Schematic picture of a complex of two random het-
eropolymer chains.
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FIG. 2. Contact map ��� corresponding to the complex of two
random heteropolymer chains shown in Fig. 1.
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�m,n = T ln��m,n − 1�

= ��+ = T ln�eu/T − 1� in the case of match,

�− = T ln�ev/T − 1� in the case of mismatch.


�9�

Taking �+ as the unit of the energy, we can rewrite Eq. �8� as
follows:

F̃m,n = max�F̃m−1,n, F̃m,n−1, F̃m−1,n−1 + �̃m,n� , �10�

where

�̃m,n = �1 in the case of match,

a =
�−

�+ in the case of mismatch. � �11�

In the low-temperature limit the parameter a has a simple
expression in terms of coupling constants u and v:

a =
�−

�+ =
ln�ev/T − 1�
ln�eu/T − 1� T→0 =

v
u

. �12�

The initial conditions for F̃m,n are transformed due to the
second of Eqs. �1� into the following ones:

F̃0,n = F̃n,0 = F̃0,0 = 0. �13�

B. Matching with gaps: the cost function

In Eqs. �8�–�13� we can recognize the recursive algorithm
�17,18� for the determination of the length Fm,n of the longest
common subsequence �LCS� of two arbitrary sequences of
lengths m and n. It is easy to see that the search of Fm,n can
be completed in polynomial time O�mn�.

Recall that the problem of finding the LCS in a pair of
sequences drawn from the alphabet of c letters is formulated
as follows. Consider two sequences �= ��1 ,�2 , . . . ,�m� �of
length m� and �= ��1 ,�2 , . . . ,�n� �of length n�. For example,
let � and � be two random sequences of c=4 base pairs A,
C, G, T of a DNA molecule, e.g., �= �A ,C ,G ,C ,T ,A ,C�
with m=6 and �= �C ,T ,G ,A ,C� with n=5. Any subse-
quence of � �or �� is an ordered sublist of � �and of ��
entries which need not to be consecutive, e.g, it could be
CGTC, but not TGC. A common subsequence of two se-
quences � and � is a subsequence of both of them. For
example, the subsequence CGAC is a common subsequence
of both � and �. There are many possible common subse-
quences of a pair of initial sequences. The aim of the LCS
problem is to find the longest of them. This problem and its
variants have been widely studied in biology �19–22�, com-
puter science �17,23–25�, probability theory �26–31�, and
more recently in statistical physics �18,32–34�. A particularly
important application of the LCS problem is to quantify the
closeness between two DNA sequences. In evolutionary bi-
ology, the genes responsible for building specific proteins
evolve with time and by finding the LCS of similar genes in
different species, one can learn what has been conserved in
time. Also, when a new DNA molecule is sequenced in vitro,
it is important to know whether it is really new or it is similar

to already existing molecules. This is achieved quantitatively
by measuring the LCS of the new molecule with other ones
available from database.

In the simplest version of the LCS problem only the num-
ber of perfect matches is taken into account, i.e., there is no
difference between mismatches and gaps. One can, however,
easily construct a generalized model where this difference
comes into play. Introduce the general “cost function” S hav-
ing a meaning of energy �see, for example, Refs. �35,38� for
details�

S = Nmatch + �Nmis + �Ngap. �14�

In Eq. �14� Nmatch, Nmis, and Ngap are correspondingly the
numbers of matches, mismatches, and gaps in a given pair of
sequences—see Fig. 3, and � and � are, respectively, the
energies of mismatches and gaps. Without the loss of gener-
ality, the energy of matches can be always set to 1. In addi-
tion to Eq. �14� we have an obvious conservation law

n + m = 2Nmatch + 2Nmis + Ngap �15�

which allows one to exclude Ngap from Eq. �14� and rewrite
this expression as follows:

S = Nmatch + �Nmis + ��n + m − 2Nmatch − 2Nmis�

= �1 − 2��Nmatch + �� − 2��Nmis + const. �16�

In Eq. �16� the irrelevant constant ��n+m� can be dropped
out.

Now we can adopt �1−2�� as a unit of energy. Finally we
arrive at the following expression:

S̃ = Nmatch + �Nmis, �17�

where

� =
� − 2�

1 − 2�
�18�

and ��1 by definition. The interesting region is 0���1,
since otherwise there are no mismatches at all in the ground
state �i.e., there is no difference between �=0, which corre-
sponds to the simplest version of the LCS problem, and �
	0�.

It is known �35,38� that the ground-state energy

S̃max = max�Nmatch + �Nmis� �19�

satisfies the recursion relation

S̃m,n
max = max�S̃m−1,n

max ,S̃m,n−1
max ,S̃m−1,n−1

max + 
m,n� �20�

with

- match;

- mismatch;

- gap{ {

{ {
{

AABABBBAABBAAABAAB

A'B'A'A'B'B'A'B'B'B'A'B'A'B'B'

FIG. 3. Matches, mismatches, and gaps in a pair of sequences
corresponding to the configuration of two random heteropolymers
shown in Fig. 1.
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m,n = �1 in the case of match

� in the case of mismatch

 �21�

Indeed, the ground state may correspond either �i� to the last
two monomers connected, then the ground-state energy

equals S̃m−1,n−1
max +
M,N or �ii� to the unconnected end mono-

mer of the first �or second� chain, then the ground-state en-

ergy is S̃m,n−1
max �or S̃m−1,n

max �.
Comparing Eqs. �20� and �21� with Eqs. �10� and �11� one

sees that they are identical up to the exchange of variables
�↔a. This establishes the analogy between initial het-
eropolymer problem formulated in Eqs. �1� and �2� in the
low-temperature limit �10� and the standard matching prob-
lem with general cost function �14�.

For a pair of fixed sequences of lengths m and n, the cost

function S̃m,n
max is just a number. In the stochastic version of

the LCS problem one compares two random sequences
drawn from alphabet of c letters and hence the cost function

S̃m,n
max is a random variable. We are interested in the compu-

tation of the expectation and the variance of S̃m,n
max for m=n

�1 and the interpretation of the obtained results for LCS in
terms of initial problem of unzipping of two random het-
eropolymers.

C. Bernoulli model for heteropolymers

We should note that the variables �̃m,n in Eq. �8� are not
independent of each other. Actually, consider a simple ex-
ample of two strings �=AB and �=A�A�. One has by defi-
nition �̃1,1= �̃1,2=1 and �̃2,1=0. The knowledge of these
three variables is sufficient to predict that the last two letters
do not match each other, i.e., �̃2,2=0. Thus, �̃2,2 cannot take
its value independently of �̃1,1 , �̃1,2 , �̃2,1. These residual
correlations between the variables �̃i,j make the LCS prob-
lem very complicated. However, for two random sequences
drawn from the alphabet of c letters, the correlations between
�̃m,n vanish for c→�.

In our work we restrict ourselves with the so-called Ber-
noulli matching �BM� model �18� �which is simpler but yet
nontrivial variant of the original LCS problem� where one
ignores the correlations between �̃m,n for all c. The cost func-

tion F̃m,n
BM of the BM model satisfies the same recursion rela-

tion �8� except that the �̃m,n’s are now independent variables,
each drawn from the bimodal distribution

�̃ = �a with probability P��̃� = 1 − 1
c ,

1 with probability P��̃� = 1
c .


 �22�

As has been said already, this approximation is expected to
be exact only in the appropriately taken c→� limit. Never-
theless, for finite c, the results on the BM model can serve as
a useful benchmark for original LCS model to decide if in-
deed the correlations between �̃m,n are important or not.

Note that the problem under discussion can be redefined
as follows. Consider a matrix �̃ of size mn and let the
elements of this matrix be independent random variables
with bimodal distribution �22�. Consider now all directed
paths in this matrix, i.e., ordered sequences

��m1 ,n1� ; �m2 ,n2� ; . . . ; �mk ,nk�� such that mi�mi−1 and ni
�ni−1 for i=2, . . . ,k. Calculating the ground-state energy of
the matching problem is obviously equivalent to maximizing
the sum of the matrix elements along these directed trajecto-
ries:

Em,n�a� = max
all sequences

��
i=0

k

�̃mi,ni� . �23�

In Fig. 4 we show an example of the evolution of the optimal
path with the increase of a for some particular random dis-
tribution of weights “a” and “1” �shown by white and gray
squares, respectively� for the alphabet of four letters �i.e., c
=4�.

The optimal path for small a’s is drawn in bold in Fig. 4.
With the increase of a, the first change in the optimal path
configuration happens at a= 1

3 when a shortcut I �shown by a
thin line� is formed instead of the corresponding section of
the bold line. Then, at a= 1

2 the shortcut marked by II actu-
ates, then at a= 2

3 the one marked by III comes into play. So,
for a�

2
3 the optimal path is III-I-II. In what follows we call

this path subdiagonal, meaning that it goes only through the
diagonal of the matrix �ai,i for i=1, . . . ,n� and one of its
subdiagonals �ai,i+1 or ai+1,i for i=1, . . . ,n−1�. Finally, at a
= 5

6 the subdiagonal path III-I-II ceases to be the optimal one,
and optimal path sticks to the diagonal �dashed line� where it
stays up to a=1.

IV. EXPECTATIONS OF LCS ENERGY FOR GENERAL

COST FUNCTION S̃

In this section we consider the dependence of the ground
state energy on the parameter a defined in Eqs. �12�–�21�.
We start with the consideration of the limiting cases: �i� a
�1 and �ii� �=1−a�1 and then, with the physical insight in

I

II

III

FIG. 4. An example of a random distribution of “1’s” �gray
squares� and “a’s” �white squares� on a 2020 matrix with c=4.
The optimal path for a=0 is shown by the thick line, the diagonal
optimal path for a=1 by the dashed line, and the evolution of the
optimal path with increase of a by the thin line. The 1’s and a’s
lying on the optimal paths are marked by filled and open circles,
respectively. See the main text for more details.
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hands, proceed to the semiquantitative consideration of the
general case.

A. The case 0	a= u
v ™1

In the limit a=0, the problem under consideration corre-
sponds exactly to the simplest version of the longest increas-
ing subsequence �LIS� problem, where the mismatches have
no cost at all. The Bernoulli matching model for this problem
has been considered in Refs. �18,35� and later, in connection
with random matrix theory, in Ref. �36�. An example of the
random matrix with the optimal path is outlined by the bold
line in Fig. 4 �only filled circles, i.e., points with the weight
equal to 1 are relevant in this case�. We know that the
ground-state energy Em,n as a function of the chain lengths
m ,n behaves asymptotically for large m and n as

Em,n�c,a = 0� =
2�pmn − p�m + n�

q

+
�pmn�1/6

q
��1 + p� −� p

mn
�m + n��2/3

� ,

�24�

where p=c−1, q=1− p, and � is a random variable with the
Tracy-Widom distribution �37�. The ground-state energy
Em,n�a=0� has the meaning of a LIS length of “1” �see Ref.
�36��. The mean value �Em,n� for n=m�1 growth as

�Em,n� 	 �En,n� = 2
�p − p

q
n =

2

1 + �c
n . �25�

Consider now the case a�0 paying special attention to the
effects of finite values of m ,n on typical fluctuations of E.
We assume below m=n for simplicity. If a is a small positive
constant 0	a= u

v �1 �the meaning of the notation “small” is
specified below�, then the trajectory of the optimal matching
path is not changed with respect to the case of a=0. The only
difference from the a=0 case is that there are mismatches
inserted between the matches whenever it is possible �see
open circles along the bold line in Fig. 4�. It is not difficult to
estimate the number of such inserted mismatches. Namely,
the typical distance �d� between the consequent “1” �i.e.,
gray squares� along the optimal path in Fig. 4 is dictated by
the density of black circles along the optimal path �see Fig.
4�. Projecting �d� to the horizontal �first chain� and vertical
�second chain� axes, we get, correspondingly, �mi+1−mi� and
�ni+1−ni�. For m=n�1 one obviously has

�d� = �mi+1 − mi� = �ni+1 − ni� =
n

�En,n�
=

1 + �c

2
. �26�

The average energy gain due to a’s �i.e., white squares in
Fig. 4� inserted into the optimal path can be estimated as
follows:

��E� = �En,n���min�mi+1 − mi, ni+1 − ni�� − 1�a. �27�

Indeed, we can insert a white square into the optimal path
between consequent gray squares if and only if the distance
between these consequent gray squares along each axis is

bigger or equal than 2 �we measure the distance in elemen-
tary squares�. Let us estimate now ��E� from above and
from below.

�1� The upper bound is based on an assumption that the
increments of m and n are fully correlated. In this case
�min�mi+1−mi ,ni+1−ni��= �d� with �d� computed in Eq. �26�.
Therefore, for ��E� we obtain the following estimate:

��E� 	 �En,n���d� − 1�a = �1 −
2

1 + �c
�na. �28�

�2� The construction of the lower bound corresponds to an
assumption that the increments of m and n are completely
independent. The computations in this case are slightly more
involved since we have to compute explicitly the average
value of the minimum dmin of two independent increments m
and n. The computations presented in Appendix A lead us to
the following lower bound of ��E�:

��E� � �En,n���dmin� − 1�a = �1 + �c

2�c
−

2

1 + �c
�na .

�29�

Collecting Eqs. �28� and �29� we arrive at the following bi-
lateral estimate of ��E� for 0	a�1:

�1 + �c

2�c
−

2

1 + �c
�a 	

��E�
n

	 �1 −
2

1 + �c
�a . �30�

It is worthwhile to notice in advance that, according to the
numerical simulations, the genuine values of ��E� /n are ac-
tually very close to the lower bound �29�.

B. The case a=1−� (0	�™1)

Turn now to the opposite situation a=1−� �0	��1�.
For �=0 the situation is trivial. Indeed, there is no difference
between “1’s” and “a’s” �i.e., gray and white squares at Fig.
4 are identical� and the optimal path is the diagonal one with
the energy

E�m,n� 	 min�m,n�; E�n,n� 	 n . �31�

Now, for small but finite � and not too long trajectories n �the
definition of “not too long” is, once again, to be given be-
low�, the longest possible path still sticks to the main diag-
onal �see Fig. 4�. This path is optimal with the ground-state
energy given by

En
diag�a� = n − k�, �32�

where k is the number of a’s on the diagonal, which is a
random variable distributed with the binomial law

W�k,n� =
n!

k ! �n − k�!
qkpn−k �33�

�recall that q=1− 1
c and p= 1

c �. Hence the average energy
�En

diag� per monomer on the diagonal path equals
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1

n
�En

diag� = 1 −
�k�
n

� = 1 − �1 − p�� . �34�

Let us estimate now the length, nd, on which the optimal path
detaches from the main diagonal. The optimal path of length
n is separated from each of the suboptimal ones �i.e., those of
length n−1� by the energy gap �E:

�E = �n − k�� − �n − 1 − k��� = 1 − ��k , �35�

where �k=k−k� is the difference in the number of a’s on the
optimal �diagonal� path and on the best of the suboptimal
paths of lengths n−1 �see Fig. 4�. The optimal path detaches
from the diagonal when �E	0. Since �k cannot exceed n
−1, the diagonal path is always optimal until

1 − ��k 	 0 ⇒ 1 − �nd − 1�� 	 0 ⇒ nd � �−1 + 1, �36�

where nd is the length of the optimal path which detaches
from the diagonal at energy �. The inequality �36� gives
rather crude lower bound for the value of n=nd for which the
detachment of the optimal path from the diagonal actually
happens. To acquire better bounds we should take into ac-
count the concurrent effects involved. On one hand, the
single diagonal path has the advantage of being the longest
one. The corresponding value of k has a binomial distribu-
tion �33� with the mean �k�=nq. On the other hand, the sub-
optimal paths �i.e., those of lengths n−1� are disadvanta-
geous because they are shorter, however their intrinsic
advantage consists in high degeneracy: one has many such
suboptimal trajectories. The number k� of a’s on each par-
ticular suboptimal path is a binomial distributed random
variable with the probability density W�k� ,n−1� and the
mean �k��= �n−1�q. Now we have to find the best �i.e., the
minimal� value �k�� among N suboptimal paths. These sub-
optimal paths �there are Nn2 /2 of them� are, however, not
independent. It is easy to understand that the number of in-
dependent suboptimal paths Nind satisfies the following bilat-
eral inequality:

2 � Nind � 3n − 2. �37�

Indeed, on one hand, there are at least two independent paths
coinciding with upper and lower subdiagonals. On the other
hand, by definition, the suboptimal paths can visit only these
two subdiagonals and the main diagonal itself. The corre-
sponding energetic costs are therefore always linear combi-
nations of the values on the diagonal �n� and two subdiago-
nals �n−1�, that is, n+2�n−1�=3n−2 accessible matrix
elements, which are themselves independent random vari-
ables. Evidently one cannot construct more than 3n−2 inde-
pendent linear combinations out of 3n−2 independent vari-
ables. We are, hence, to compute the average minimum of
Nind independent random quantities each distributed with the
probability density W�k� ,n−1�. This task is solved in Appen-
dix B. Taking into account the inequality �37� which defines
the boundaries of Nind, we can get the upper and lower esti-
mates for ��kNind

� �n�1�, where ��kNind
� is defined as fol-

lows:

��kNind
� = �k� − �kNind

� � 	 npq − �kNind
� � . �38�

Substituting into Eq. �38� the expressions derived in Appen-
dix B for �kNind

� �, we have

q +
1

��
�npq�1/2 	 ��kNind

�

	 q + �2npq�1/2�ln�3n3/2�pq�1/2�1/2� .

�39�

Remembering now that the optimal path detaches from the
diagonal at ��kNind

��−1, and dropping out all constants of
order of one, we arrive for n�1 at the following approxi-
mate bilateral estimate for the detachment length nd:

nd � ��2pq�−1, nd ln nd � ��2pq�−1 �40�

The obtained estimate �40� is compared to our numerical
simulations and is discussed at length in the next Section.

C. The general case a« [0 ,1]: Detachment, energy cost,
and fluctuations

We consider in this section the general case of a� �0,1�
and define the average ground-state energy �En�c ,a��
= �En�c ,a�� /n for different values of c and a. The most at-
tention is paid to the finite size effects.

1. Detachment

In Fig. 5 we show the results of our computer simulation
of the average energy of the optimal path as a function of the
sequence length for different values of a and p. Here and
below all the computer simulation results are the averages of
104 independent realizations of disorder. One notes the cross-
over �for fixed a and p� from the path sticking to the diago-
nal at low n and the high-n regime, where the optimal path is
detached. For n�1 the average energy of the path eventually
saturates at some value E�, which is a and p dependent.
Moreover, though the detachment point is not exactly well
defined, the rescaling according to the inequality �40� shows
that it gives rather decent estimate of the detachment point.
Note also that the plateau region persists up to quite large
values of �. Indeed, it is easy to see from Eq. �36� that the
detachment happens at nd�2 �and thus a plateau of at least
two points exists� for any a�ad=1 /2. It is less obvious and
more important, however, that the more accurate estimate
�40� is still relevant in the whole range of a� �1 /2,1�.

2. Energy cost

In Fig. 6 we present the estimates of �En�c ,a��. These
estimates we obtain by the finite size scaling extrapolating
�En�c ,a�� from large, but finite, n to n→�. In our construc-
tion we use the following conjecture. One sees from Eq. �24�
that at a=0 and for m=n�1 the average ground-state energy
�En�c ,a=0�� converges to its value at infinity �E��c ,a=0��
= 2

1+�c
with the scaling exponent �=�0−1=−2 /3, where �0

=1 /3 is the well-known Kardar-Parisi-Zhang �KPZ� expo-
nent �38,39�
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�En�c,a = 0�� =
1

n
�En,n�c,a = 0�� =

2

1 + �c
+ f�c����n�,

�41�

where f�c�= c1/6��c−1�
�c+1

and ���=−1.7711¯ �see Ref. �37��. Re-
call, that the appearance of the KPZ exponent in Eq. �41�
deals with very deep mathematical relation between the Ber-
noulli matching problem and statistics of largest eigenvalues
of ensembles of Gaussian random matrices �see, for example,
Ref. �36��.

We assume that the exponent � is a independent and the
finite size scaling of �En�c ,a�� for a�0 and n�1 �see also
Ref. �38�� is

�En�c,a�� = �E��c,a�� + g�c,a����n�, �42�

where g�c ,a� is some function of c and a, but not of n.
Extrapolating the data of �En�c ,a�� computed numerically for
large finite n to �E��c ,a�� on the basis of finite size scaling
�42�, we arrive at the family of curves �E��c ,a�� for c
=2,4 ,8 ,16,32,64 shown in Figs. 6�a� and 6�b�. The results
presented in Fig. 6�c�, as well as those of Ref. �38� demon-
strate that the conjecture �42� is actually plausible. Apart
from the points obtained by numerical simulation, in Fig.
6�b� we depict �a� the estimates for �E��c ,a�� at small a
given by the inequality �30� and �b� the estimates of
�E��c ,a�� on the plateau for a→1 �Eq. �34��.

One should note that the numerical results for a�1 are
very close to the lower bound of Eq. �30�. We use this fact to

np(1-p) np(1-p)lnn np(1-p)

E E E

FIG. 5. �Color online� The dependence of the reduced mean energy Ẽ= ��En�− �E0�� / ��E��− �E0�� of the optimal path on the reduced size
n of the system: �a� for c=4 and �=0.3 �squares�, �=0.2 �circles�, and �=0.1 �triangles�; �b� and �c� for �=0.2 and c=2 �squares�, c=8
�circles�, and c=32 �triangles�. Note that curves for c=2,8 almost collapse after rescaling prescribed by the right-hand side of Eq. �40�, while
those for c=8,32 collapse with rescaling prescribed by the left-hand side of Eq. �40�.

a a n -2/3

1

2

3

(a) (b) (c)

n n n� � �

FIG. 6. �Color online� �a� The limiting value of the ground-state energy per cite �En�a��	�E�a�� /n as a function of a for different c: c=2
�squares�, c=4 �circles�, c=8 �up triangles�, c=16 �diamonds�, c=32 �down triangles�. �b� The upper �dashed line� and lower �thin solid
lines� bounds and the hyperbolic fit �thick line� of the �En�a�	�E�a�� /n� dependence for c=4 �circles� and c=16 �diamonds�. �c� The
examples of the ground-state energy per cite �en� as a function of n−2/3 �thick line� and the finite-size scaling fits used to obtain points in �a�
�thin lines� for several different values of a and c, line 1: a=0.2,c=4, line 2: a=0.6,c=8, line 3: a=0.7,c=16.
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produce a fit for the dependence �E��c ,a�� in the whole
range of parameter a� �0,1� for two values of c �c=4,16�.
Namely, we fit the data of �E��a�� by a hyperbola of general
form

��E��a�� + �1a + �1���E��a�� + �2a + �2� = R , �43�

where the constants �1,2 ,�1,2 ,R are chosen from the con-
straints that the hyperbola �43� passes through the points
�a ,E��a��= �0,2 / ��c+1�� at a=0, and �a ,E��a��= �1,1� at
a=1 with the slopes given by limiting linear approximations
�30� and �34�, correspondingly. These four constraints leave
us effectively with only one free parameter, which we change
to arrive at the best fit of the experimental data. As one sees
from Fig. 6�b�, the found fits for different values of c are
quite good.

3. Fluctuations

Let us now discuss briefly the fluctuations of the average
free energy and their dependence on n. One expects for n
�1 the average fluctuations �E

2 to be proportional to n2/3,
typical for the Kardar-Parisi-Zhang universality class �38�.
This conjecture is consistent with the computation of the
fluctuations of the averaged length of the LIS in the a=0
limit for Bernoulli matching model �see Ref. �36��:

�E
2�n� = var En,n�c� = �En,n

2 �c�� − �En,n�c��2

� ���2� − ���2�f2�c�n2�0, �44�

where �0=1 /3 and ��2�− ���2=0.8132, . . ..
The behavior for intermediate values of n is more in-

volved. In particular, for small a and intermediate n one ex-
pects for �E

2�n� the growth with the critical exponent �1:

�E
2�n�  n2�1. �45�

The exponent �1 is known to be typical for the “transitional”
regime in the �1+1�D KPZ equation �39,40�. In terms of the
work �40� the exponent �1, which governs the short-time
behavior of the correlation function of KPZ model, is �1
= �d+4� / �2z�−1, where z is the dynamic exponent �40�, and
d is the space dimensionality. In d=1 the value of z for KPZ

model is known exactly, z=3 /2, giving the value �1=2 /3.
For a=1−� ���1� the plateau regime for En�c ,a� exists

at low n�nd �where nd is defined in Eq. �40��. The argu-
ments of Sec. IV B allow us to expect that, in this case, the
variance �E

2�n� behaves as

�E
2�n�  n2�2 �46�

with the Gaussian exponent �2=1 /2 since the plateau energy
is just the sum of n-independent random variables.

The numerical results presented in Fig. 7 for �E
2�n� fully

confirm the behaviors �44�–�46�. In the case of intermediate
a shown in Fig. 7�c� the sequence of regimes, at least for
large c is more reach: we first note the exponent 2�2=1
�plateau�, then the exponent 2�1=4 /3 �“transitional” KPZ�,
and finally the exponent 2�0=2 /3 �large-scale KPZ�. It looks
like the growing plateau region continuously “swallows up”
the finite-size KPZ region with the increase of a, and thus at
�=1−a�1 one sees only two regimes.

There is a question of how universal the obtained results
are with respect to the change of the model settings. Indeed,
the exponents �0,1,2 are obtained in the assumption of Ber-
noulli matching, i.e., assuming the contact matrix � to have
no correlations. Certainly, in reality it is not the case. Though
we assume that some of the exponents may be universal, and
may even hold in the presence of strong long-ranged corre-
lations in the associating heteropolymer strands, the situation
a priori is very obscure. A thorough numerical investigation
of this question would be, in our opinion, an essential con-
tribution in the field of the KPZ-related studies.

V. CONCLUSION

In this work we have analyzed the average normalized
ground-state energy E of the complex of two random het-
eropolymers with quenched sequences as a function of chain
length n in the ensemble of chains with uniform distribution
of primary structures. The main attention is paid to the be-
havior of the function E�n� at intermediate chain lengths and
low temperatures.

The behavior of the energy is shown in Figs. 5 and 6. In
addition to the formal estimates of the boundaries �30� and

np(1-p) np(1-p) np(1-p)

1

1

2/3

2/3

2/3

2/3

2/3

4/3
4/3

E E

E

FIG. 7. �Color online� The dispersion �E of the ground-state energy as a function of N for different values of a and c. �a� a=0.7, �b�
a=0.2, �c� a=0.4. In all figures c=2,4 ,8 ,16,32 in ascending order.
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�34� and of the crossover length nd �Eq. �40��, it seems to be
desirable to acquire the qualitative understanding of the zip-
ping energy �En� for different chain lengths and different
values of a.

One sees that the normalized energy �En� for relatively
long �n�nd� zipped chain configurations, is larger than the
corresponding energy in a hairpin state for n	nd. This can
be explained in the following way. Longer chains could op-
timize their energy matching via loops creation, while for
short chains the penalty for loop formation is forbiddingly
large. Hence, the inequality �40� gives the criterion for the
characteristic scale length which separates two kinds of be-
havior: short chains form the hairpin configuration in which
the monomers are forced to bond without any regard of their
species, while long chains are capable of adjusting their spa-
tial configurations by loop formation to obtain better match-
ing. The crossover around nd is, thus, separating the small-n
region, where the energy approaches the plateau value �34�
exponentially fast with decreasing n, and large-n region,
where �En� approaches its value at n→� with the power-law
dependence �E��− �En�n−2/3. This behavior of �En� depends
only qualitatively �see Eq. �40�� on the parameter a for suf-

ficiently large a�ad0.5. �For the definition of ad see Sec.
IV C 1.�

The unzipping process of two random heteropolymer
chains is schematically shown in Fig. 8. The results of pre-
vious sections allow us to find the dependence of the force
f�x� per chain monomer, on an average extension distance x
between chain ends. If N is the total length of each het-
eropolymer chain, and n is the average current length of the
heteropolymer complex measured from its common bottom
end �see Fig. 8�, then by construction, x=2�N−n�. For the
sake of simplicity, we neglect here the fluctuations of the
unzipped regions of the chain.

The plot of the average force f per chain monomer on the
average separation distance x is shown in Fig. 9. To be pre-
cise f�x� is the force necessary to unzip two random het-
eropolymer chains whose ends are separated by the distance
x averaged over all equally distributed primary structures at
low temperatures for fixed value a= v

u and given number of
letters in the alphabet c. The function f�x� can be easily
obtained from the dependence �En� shown in Fig. 6. Namely,
f�x�= d

dn �n�En�� at n=N−x /2.
Qualitative explanation of this phenomenon repeats the

above discussion of the ground-state free energy �En�. As it
has been mentioned already, the main attention in our work
is paid to relatively small n, i.e., to large average separation
distances x. �For discussions of the peculiarities of the force
on the other bound, i.e., at x→0, see Ref. �9�.� As x tends to
the contour length 2N the equilibrium unzipping force f�x�
gradually decreases as const−n−2/3=const− �N−x /2�−2/3 un-
til N−x /2nd when the force drops further down to reach
the limiting plateau value �34� where it saturates indepen-
dently of further increase of x up to xmax	2N.

Let us stress once more that the obtained result is valid
only for values of f�x� averaged over the ensemble of real-
izations of different heteropolymer sequences: for any given
heteropolymer sequence, the equilibrium force would be a
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FIG. 8. Unzipping of two random heteropolymers.
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FIG. 9. Dependence of unzipping force f per chain monomer on average separation distance x. �a� Log-linear scale, �b� linear scale.
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highly fluctuating function of the distance x. Certainly, the
f�x� dependence averaged over the ensemble of quenched
heteropolymer sequences does not provide any information
about the behavior of the individual pair of zipped het-
eropolymer chains �41�. However, the investigation of the
individual behavior is not a goal of our study. We use the
averaged f�x� dependence to extract the information just
about the statistics of matchings of two zipped random se-
quences of finite lengths in the low-temperature limit. From
this point of view, the most interesting is the behavior f�x� at
large separation distances, when x approaches the total con-
tour lengths xmax=2N. Let us emphasize that the results of
our study to lesser degree are applied to the DNA molecules,
than to a pair of synthetic random heteropolymer chains,
since the typical number of mismatches per double DNA
strand is very small �of order of few monomers� and it is
senseless to talk about any statistics in that situation.

In reality, the unzipping experiments are often set up in a
fixed-force ensemble, instead of a fixed distance one �see, for
example, Refs. �41–43��, i.e., the constant force is applied to
the ends of the chain, and the dynamics of the unzipping
under this constant force is studied. In such a setting one can
measure the relative occupation times for the different inter-
mediate states, and reconstruct the overall free energy land-
scape based on this occupation time data. In terms of such a
setting, we predict that after the averaging over many real-
izations with different primary structures, the occupation
times for almost unzipped states will be less than those for
the almost zipped conformations �the particular difference
depending on the applied force�. More precisely, these occu-
pation times will gradually decrease with the decrease of x
from 2N to 2N−2nd and then saturate.
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APPENDIX A: AVERAGE VALUE OF THE MINIMUM
OF TWO INDEPENDENT INCREMENTS

First of all we should make a conjecture about the distri-
bution of intervals dm=mi+1−mi and dn=ni+1−ni. It seems to
be rather natural to suppose that the intervals dm,n have the
exponential distribution, i.e., p�dm,n�e−kdm,n �one can easily
check that at least the tails of this distribution are indeed
exponential�. Normalizing p�dm,n�, we get

p�dm,n� =
e−kdm,n

�
dm,n=1

�

e−kdm,n

= �ek − 1�e−kdm,n. �A1�

The mean values �dm� and �dn� are

�dm� = �dn� = �
dm,n=1

�

dm,np�dm,n� =
ek

ek − 1
. �A2�

Now we are to find the averaged joined minimum �dmin� of
two random variables dm and dn distributed with Eq. �A1�.
To do that we proceed as follows. First of all find the discrete
integral distribution function F1�z� for each random distribu-
tion p�dm� and p�dn�:

F1�z� = �
dm,n=1

z

p�dm,n� = 1 − e−kz. �A3�

Following the general procedure, define now the joined dis-
crete integral distribution function F2�z�

F2�z� = 1 − �1 − F1�z��2 = 1 − e−2kz. �A4�

Taking the discrete derivative, p2�z�=F2�z�−F2�z−1�, we
find the probability distribution, p2�z=d� for the minimum
dmin=min�mi+1−mi , ni+1−ni�. The last step consists in tak-
ing average �dmin� with respect to the joined distribution
function p2�d�:

�dmin� = �
z=1

�

zp2�z� =
e2k

e2k − 1
. �A5�

Collecting Eqs. �26�, �A2�, and �A5�, we get

ek

ek − 1
=

1 + �c

2
,

e2k

e2k − 1
= �dmin�

�A6�

and thus, resolving Eq. �A6�,

�dmin� =
�1 + �c�2

4�c
. �A7�

Substituting Eq. �A7� into Eq. �27� one finally obtains the
estimate of �E from below:

�E � �Ln,n���dmin� − 1�a = �1 + �c

2�c
−

2

1 + �c
�na .

�A8�

APPENDIX B: AUXILIARY CONSTRUCTION FOR
ESTIMATION OF THE DETACHMENT LENGTH

Assuming n
c �1 one can replace the binomial distribution

�33� with the Gaussian one and approximate W�k� as follows:

W̃�k,n� =
1

�2�npq
exp�−

�k − �k��2

2npq
� , �B1�

where �k�=nq. The distribution function W�k� ,n−1� for the
variable k� is completely similar up to the replacement n
→n−1.

We are now to compute the mean minimal value �kNind
� � of

Nind random variables, each distributed with W�k� ,n−1�
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	W�k��. Repeating the same procedure as in the Appendix
A, we proceed as follows. First of all pass to the integral

distribution function F̃�z�:

F̃�z� = �
−�

z

W̃�k��dk� =
1

2�1 + erf� z − �n − 1�q
�2�n − 1�pq

�� .

�B2�

Now construct the new probability distribution function Q�z�
for the joint distribution, as follows:

Q�z� =
d

dz
�1 − �1 − F̃�z��Nind� = NindF̃��z��1 − F̃�z��Nind−1.

�B3�

The desired mean minimal value �kNind
� � now reads

�kNind
� � = �

−�

�

zQ�z�dz . �B4�

Now, taking the estimate �37� into account one readily ar-
rives at the lower bound for �kNind

� �. Indeed, for Nind=2

�kNind
�min� =

1
��
�

−�

�

�y�2�n − 1�pq + �n − 1�q�e−y2
�1 − erf�y��dy

= �n − 1�q −
1

��
��n − 1�pq�1/2. �B5�

For Nind=3n−2�1 �see Eq. �37�� the integral �B4� cannot be
computed analytically and therefore one needs to apply some
approximate approach. We proceed as follows. The function

F̃�z� has a sense of the area under the curve W̃�k� in the
interval k�� �−� ,z�. Consider now Nind�1 independent ran-

dom variables each distributed with W̃�k��. For z−�n−1�q
��n−1�pq

�−1 on average one point of Nind equally distributed ran-

dom points lies in the area F̃�z�Nind
−1 . Since this area is the

area under the left tail of the distribution W̃�k��, the point
inside this area is the minimal one by construction. So, ex-

panding F̃�z� for z−�n−1�q
��n−1�pq

�−1, we get

F̃�z� =
1

2�1 + erf� z − �n − 1�q
�2�n − 1�pq

��
�

��n − 1�pq
�2���n − 1�q − z�

exp�−
�z − �n − 1�q�2

2�n − 1�pq � 
1

Nind
.

�B6�

Since the term in the exponent in Eq. �B6� varies much faster
than the pre-exponential term, we can roughly estimate z
= �kNind

�max� as follows:

�kNind
�max� � �n − 1�q − �2�n − 1�pq�1/2

„ln�Nind��n − 1�pq�1/2�…1/2.

�B7�

Note that Eq. �B7� is obtained from Eq. �B6� under the con-
dition z	 �n−1�q which fixes the correct sign of the square
root branch of the second term in Eq. �B7�.

Substituting Nind=3n−2 into Eq. �B7� and taking into ac-
count that n�1, we get the following desired estimate for
�kNind

�max�:

�kNind
�max� � �n − 1�q − �2npq�1/2�ln�n3/2�pq�1/2��1/2. �B8�

Now we can use the boundaries Eqs. �B5� and �B8� for get-
ting lower and upper bounds of ��kNind

� and of the detach-
ment length nd—see Eqs. �39� and �40�.
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